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Abstract-Current interpretations of structures are generally based on homogeneous and steady deformation 
models, despite the fact that both the heterogeneity of rocks (materially, rheologically and geometrically) and the 
time dependence of imposed geological conditions give rise to significant heterogeneous and non-steady flow. In 
concert with field observations, we emphasize that the expectation of heterogeneity and non-steadiness is the key 
to understanding natural deformation and that in order to carry out successful structural analysis and tectonic 
interpretation, it is necessary to recognize the first-order distinction between imposed boundary conditions 
typically used to define the tectonic regime (e.g. transcurrent, transpression) and the response recorded by rocks 
within the zone (structures and fabrics). Using S-C fabric as an example, it is demonstrated how flow with anon- 
zero spinning component resulting from the rheological contrasts and/or geologically realistic time-dependent 
boundary displacement can drastically change the ‘ideal’ geometric and kinematic relations between the fabric 
and the host zone. In agreement with both theoretical analysis and field observation, it is shown that natural flow 
regimes range from pure shear to pure rotation, including super-simple shear. In consideration of the 
heterogeneity and non-steadiness of natural deformation, kinematic analysis is justifiable only within a 
homogeneous domain and steady period. Flow kinematics and mechanisms are interrelated in that, firstly, 
mechanisms provide internal constraints on kinematics, ensuring that only certain flows are possible and, 
secondly, flow kinematics will favour development of certain mechanisms. 

INTRODUCTION 

Deformation of the earth can be largely organized, for a 
given scaling dimension, into zones of deformation. At 
the simplest level, such zones comprise subjectively 
defined boundaries and an intervening volume of rock 
which typically exhibits more intense deformation or a 
higher density of structures than material outside the 
boundaries. Such descriptions are the result of field 
observations of deformation localization and hetero- 
geneous finite strain, with the most widely studied 
examples being characterized as shear zones in recog- 
nition of displacement dominantly parallel to the zone 
boundaries. Structural analysis is the mapping and in- 
terpretation of heterogeneities (e.g. lithological con- 
trast, folds, foliations, lineations, S-C fabrics, rotated 
porphyroclasts) within deformed rocks. In the classical 
works by Sander (1911, 1930, 1948, 1950, 1970) and 
Turner & Weiss (1963)) natural deformation was clearly 
treated as complex. The seminal work of Ramsay & 
Graham (1970) stands out as a demonstration of how 
structures within a shear zone can be related to bound- 
ary displacements (Fig. la). Using strict assumptions 
and significant simplification, McKenzie & Jackson 
(1983) obtained the relationship between strain rates, 
palaeomagnetism, finite strain and fault movements 
within a shear zone. Assuming a two-dimensional time- 
independent Newtonian rheology, Ramberg (1986) 
showed that flow and the accumulating finite defor- 
mation can be elegantly dealt with by the stream func- 
tion method. These ideal models are all valid within 
their assumptions and have provided insights into under- 

standing structural and fabric development. However, 
subsequent structural studies, particularly of shear 
zones, have often neglected the assumptions behind 
such models. Over the ensuing years, many geologists 
have implicitly treated shear zones, irrespective of scale, 
as having single homogeneous movement pictures when 
they correlate ‘shear-sense indicators’ to boundary dis- 
placements. 

The tendency to rely on ‘simple shear’ for studies of 
shear zone deformation is largely due to the statement 
made by Ramsay & Graham (1970, p. 799) on the basis 
of strain compatibility which, as cited by Simpson & De 
Paor (1993, p. 2) states “simple shear is the only constant 
volume strain regime that can occur in straight, parallel- 
sided shear zones bounded by undeformed wall rocks”. 
It must be emphasized that this conclusion does not hold 
unless two additional conditions are met: (1) the defor- 
mation throughout the shear zone must be homogene- 
ous, at least in the direction parallel to the shear zone 
boundary; and (2) the deformation must be continuous. 
It has been demonstrated that even if boundary con- 
ditions are identical to those of Ramsay and Graham 
shear zones, the deformation within the zone is no 
longer simple shear if rocks exhibit rheological contrasts 
(Jiang 1994a) or if discontinuous deformation is in- 
volved (Lister & Williams 1979). 

Based on both the ubiquitous field evidence for 
heterogeneous deformation (Fig. lb) and theoretical 
investigations (Lister & Williams 1983, Ishii 1992, Jiang 
1994a,b), we maintain that expectation of heterogen- 
eity, not search for homogeneity, is the key to under- 
standing natural deformation. 

1249 



1250 D. JIANG and J. C. WHITE 

Complex non-steady flow of rock occurs when: (1) the 
rock is rheologically heterogeneous (Jiang 1994a,b), 
even if boundary conditions are constant; and/or (2) the 
boundary conditions vary, even if the rock is rheologi- 
tally homogeneous. The above encompass virtually 
every condition relevant to natural deformation. In what 
follows, we: (1) summarize and develop some of the 
general principles of natural deformation; (2) investi- 
gate the non-steadiness of natural flow as a result of 
inconstant boundary displacement (non-steadiness 
resulting from rheological contrasts has been treated 
elsewhere, Jiang 1994a,b); and (3) demonstrate how 
spinning flow (typical of general non-steady flow) can 
change the geometric and kinematic relations between 
the fabric and the host zone. 

FLOW KINEMATICS-GENERAL STATEMENT 

Sander (1911, 1930, 1948, 1950) showed that struc- 
tures and fabrics can be interpreted in terms of ‘move- 
ment pictures’ on the basis of the symmetry principle 
(Paterson & Weiss 1961, Turner & Weiss 1963, Lister & 
Williams 1979, see discussion by Hobbs 1985). Move- 
ment picture can be best described by the concepts and 
terminology of flow (Sander 1970, p. 12) which are well 
documented in the earth sciences literature (Ramberg 
1975, McKenzie 1979, Means et al. 1980, Lister & 
Williams 1983, Hoeppener et al. 1983, Passchier 1986, 
Simpson & De Paor 1993, Jiang 1994a,b, Means 1994). 
These are summarized briefly in the following. 

Deformation-induced flow can be described by the 
Eulerian gradient tensor (L) of the velocity field. Since 
the gradient of uniform translation is always zero, L can 
be kinematically decomposed into a stretching tensor 
(D) and a vorticity tensor (W), i.e. L = D + W (Trues- 
dell 1954, Sedov 1971). The three eigenvalues (sr, s2, ss) 
of D are the principal strain rates whose orientations 
(eigenvectors of D) are the three instantaneous stretch- 
ing axes (ISA). Vorticity is a measure of the rotation rate 
of material lines with respect to an external frame and is 
itself decomposable into Ws, a component appropriate 
for the rotation rate of the ISA in the selected external 
frame, and Wr, the internal or shear-induced vorticity 
component (Truesdell 1953, Means et al. 1980, Lister & 
Williams 1983) where W = Ws + Wr. Being skew sym- 
metric, a vorticity tensor can be simply expressed by a 
vector called the vorticity vector whose magnitude is ‘the 
magnitude of vorticity’ (denoted by the non-bold W in 
this paper). For the simple relation between the vector 
and tensor notations of vorticity, the reader is referred 
to Means et al. (1980) and Passchier (1986). In this 
paper, we use ‘vorticity’ in general for both notations. 

Ws, whose magnitude equals twice the angular veloc- 
ity of the ISA, is generally called spin (e.g. Means et al. 
1980, Lister & Williams 1983). Means et aE. (1980) and 
Means (1994) used spin as the angular velocity of the 
ISA, in which case spin is half the magnitude of Ws. In 
Truesdell & Toupin (1960), and as adopted by Cobbold 
& Gapais (1987) and Twiss & Moores (1992), spin was 

used to mean the tensor notation of vorticity, whereas 
the term ‘vorticity’ was restricted to the vector notation. 
We favour the usage of spin as a component of vorticity 
equal to Ws, as in Lister & Williams (1983, p. 12). 
Homogeneous flow occurs only when L is constant 
throughout the rock volume. Steady flow occurs when L 
does not change with time. 

The intensity of stretching can be described by the 
effective shear strain rate, I, (cf. Frost & Ashby 1982) 
where I = {2/3[(s, - s# + (s2 - s~)~ + (ss - s~)~]}““. 
In isochoric (constant volume) flow, si + s2 + ss = 0 and 
r = [2(.$ + s; + &]i’“. The ratio of the magnitude of 
total vorticity to effective shear strain rate is Truesdell’s 
kinematic vorticity number (W, = W/l?) and describes 
the rotational intensity of the flow. The ratio of the 
magnitude of the internal vorticity to effective shear 
strain rate defines Means’ or the internal kinematic 
vorticity number (Wk = WILT’), which measures the de- 
gree of non-coaxiality. 

THE CHARACTERIZATION OF BULK FLOW 

Boundary conditions vs zone deformation 

The analysis of rock deformation in terms of discrete 
zones is based on the observation that curviplanar re- 
gions of deformation are readily defined during field 
study. In this context, zonal deformation comprises 
regions within and outside the zone demarcated by an 
assigned boundary which collectively form a study area. 
The choice of such boundaries can be very subjective 
and has, as an underlying motive, the pragmatic 
resolution of field geometries and tectonic histories. 
Geologically, boundaries can be defined variously as 
tectonostratigraphic discontinuities or lower limits of 
finite strain that can be recognized or are of interest to a 
specific study. For large-scale features, boundaries com- 
monly reflect the far-field displacements (tectonic dis- 
placements) of the zone host. The imposed effects of the 
boundary on the intervening material are the boundary 
conditions. For the purpose of kinematic analysis they 
comprise the geometry, displacement history and mi- 
gration of the boundary (Means 1984, Jiang 1994a). The 
response of the intervening material is characterized 
using the structural geometry, style and intensity of 
deformation and associated deformation attributes. The 
latter in turn influences the assignation of geological 
definitions to the particular zone (e.g. kink band, shear 
zone, fold belt). This differentiation between zone and 
boundaries arises from the abundant field evidence for 
heterogeneous behaviour in the earth and is a basic 
aspect of field methodology whereby structural domains 
are established on the basis of variations in geometrical 
attributes. 

It is essential to differentiate between displacements 
related to the zone boundaries and the response of 
the intervening rock. In two-dimensional flow cases, 
the only kinematic connection between boundary dis- 
placement (Fig. 5) and the deforming zone is the bulk 
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Fig. 1. Natural cxamplcs of shear zones. (a) Typical Ramsay & Graham (1970) shear zone. where the boundary 
l~isl~l~~c~rn~nt. internal linitc strain and ~ef~rrn~~ti~n paths arc commonly interprctcd to have simple and gcncrally 
applicable relationships (mctagabbro. North Uist, Outer Hchridcs. Scotland; scale--2.3 cm diamctcr coin). Shear zones of 
Iargcr ?~caIc with similarly looking strain gradients may have much more complicated histories (Means in press). 
(11) Gcneralizcd shear zone showing hctcrogcneous deformation which is necessarily non-steady (Jiang 19941) (granulitc 

gnciss, Dunchurch. Ontario: scale bar-5 cm). 
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wIk= 
l+C 

( 1 + c2 + 2ccos2e ) 1’2 

= tan-’ 
sin20 +( 1 + C2 + 2Ccos29 ) “2 

c + cosze 

Fig. 2. A natural example of super-simple shear where two sets of shear bands develop and cut each other, indicating 
concurrent development. They are both sinistral. The shear-strain rates accommodated by the two sets as they developed 
are denoted by PI and f2, respectively. C is the ratio of the two shear-strain rates. At any time during the development of the 
structure, if C was nearly constant, i.e. the spin component of the vorticity was negligible, the internal kinematic vorticity 
number (non-coaxiality) at that time is greater than unity (see Appendix for detail). Equal development of the two bands 
suggests that C = 1. This gives Wl. = 1.74. See text and Appendix for details. Huronian metasedimentary rocks. Espanola, 

Ontario; scale-6 cm diameter lens cap. 

1252 



Kinematics of rock flow 

Fig. 3. Kinematic indicators in a porphyroclast-rich (perthite and hornblende) gneiss from the Parry Sound shear zone, 
Dunchurch, Ontario. The bulk shear zone boundary is parallel to horizontal edges of the photograph. S-planes are defined 
by shape fabrics (porphyroclast shape) and C-planes are defined by compositional layering. S is initially oblique to C (l), but 
as finite strain accumulates, S rotates toward C which acts as a sink for material lines. At high finite strain (2), S and C arc 
parallel and cannot be differentiated. Compositional layering in such rocks is characteristically the product of high finite 
strain and defines a kinematically-initiated shear band (C-plane). Shear bands formed in this way tend to have diffuse 
boundaries. Kinematically-initiated shear bands can develop in any orientation relative to the shear zone boundaries (3) as 
an inherent attribute of heterogeneous and non-steady flow. Subsequently, kinematically-initiated shear bands can be used 
as sites for strain localization (4 shows progressive development from left to right) leading to development of mechanically- 
initiated shear bands (5) which are characterized by discrete boundaries. On the other hand, mechanically-initiated shear 
bands may. with increasing finite strain, rotate towards the sink parallel to kinematically-initiated shear bands, precluding 

differentiation of the two. Scale bar-S cm. 
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Fig. 4. Strain paths recorded by rocks can be strongly influenced by available deformation mechanisms. In particular, the 
distribution and partitioning of vorticity among different lithologies can be largely determined by the most economical 
combination of kinematic path and micromechanical behaviour. (a) Calcite mylonite with ‘non-coaxial’ fabric reflecting 
activity of dislocation glide and dynamic recrystallization (amphibolite-grade shear zone, Maniwaki, Quebec; scale bar- 
lOOpurn). (b) Carbonate-quartz-mica rock with extensive ‘flow folding’ producing sheath folds that reflect the dominance of 
grain-size-sensitive flow mechanisms in this fine-grained (<lOpm) material (sub-greenschist-grade shear zone. Cobequid 

fault zone, Nova Scotia; scale bar-S cm). 
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Fig. 5. Boundary conditions vs internal deformation. Boundary conditions (geometry, displacement and migration) set up 
the instantaneous bulk vorticity which can be ascribed to a time-dependent boundary displacement vector (e.g. a plate 
velocity). Bulk, instantaneous deformation can be defined in terms of shear strain rate (i) and stretching (shortening) strain 
rate (i) normal to the shear zone. These are analogous to the commonly used ‘pure shear’ and ‘simple shear’ components of 
the deformation. Either rheological heterogeneity or inconstant boundary displacement (dBldr # 0) will give rise to the 
spinning of the ISA of the flow in the zone. The development of structures and fabrics within the zone depends on such 

flows. 

vorticity, W,,, (the vorticity averaged over the whole 
deformation area at any instant, see Jiang 1994a). Even 
given knowledge of the boundary displacements, which 
will set up the bulk vorticity, it has been explicitly 
demonstrated (Jiang 1994a) that the nature of the 
imposed bulk vorticity (boundary displacements) does 
not constrain the kinematics of structures within the 
deforming zone. 

The ubiquity of non-steady deformation 

In the vector sense, boundary displacements can be 
expected to be a function of time during natural defor- 
mation. This means both the magnitude and/or orien- 
tation of boundary velocities can vary with time and 
position along the boundary. We now present a simple 
demonstration of how non-steady displacement of a 
shear zone boundary can induce complex bulk flow, 
even in rheologically homogeneous rocks. The refer- 
ence frame for this and subsequent discussions is fixed to 
the zone boundaries (Fig. 5). We will only consider 
plane isochoric flow with the bulk vorticity axis perpen- 
dicular to the plane (i.e. flow with monoclinic sym- 
metry). The method can be easily applied to such 
transpressional/transtensional models as Fossen & 
Tikoff (1993) and Tikoff & Teyssier (1994)) but this is 
considered redundant for this study. 

Consider a general oblique boundary displacement 
vector making an angle of @ with respect to the shear 
zone boundary. The displacement-rate vector (v) can be 
resolved into a boundary-parallel (vii) and a boundary- 
normal (vI) component. Using h to denote the instan- 
taneous width of the shear zone, the bulk shear strain 
rate (f) and bulk stretching (or shortening) rate (E) 
normal to the shear zone boundary are, respectively 
(Fig. 5): 

(I) 

The velocity gradient tensor of the bulk flow is (see 
Ramberg 1975): 
56 ,,:s-0 

Since the boundary displacement is time dependent, 
both i and f will be functions of time. 

The magnitude of the bulk vorticity, W,, measured in 
this reference frame simply equals the bulk shear-strain 
rate, i. The intensity of the rotational component of the 
flow measured in this frame is given by the Truesdell’s 
kinematic vorticity number W,, which can be reformu- 
lated as: 

w, = [(2;./# + 1]-“‘. 

If the boundary displacement rate is non-steady, W, will 
be time-dependent. 

The maximum ISA makes an angle 6 with respect to 
the shear zone boundary giving (Fig. 5): 

6 = tan-l 
1 - VTTq _ 1 sin_‘W -- 

wk 2 
k 

= tan-l[(l + 4B2)“2 - 2B], (4) 

where B = i/f can vary over time; that is, velocities both 
parallel and normal to the zone are allowed to vary over 
time. The magnitude of spin (W,) is given by: 

2 W,=spin= -2?i=_-= dB dcos-‘W 
dt 1 + 4B2 dt dt k. c5) 

The negative sign indicates that the reduction of 5 
corresponds to sympathetic spin, i.e. having the same 
sense as the bulk vorticity. 

The magnitude of the internal or shear-induced vorti- 
city (WI) and internal kinematic vorticity (Wk), the 
measure of non-coaxiality, are respectively: 

and 

w,=+- ws (6) 

WC = (4$_t 7+ 
When WS > 9, i.e. Wk -C 0, the sense of non-coaxiality 
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of the flow is the reverse of that imposed by the bound- 
ary displacement shear sense. This requires: 

dB 1+4B*. 

dt>---- 2 y (8) 

which is satisfied when d@ldt > 2j. 
When Wl, > 1, bulk scale super-simple shear (De 

Paor 1983) occurs. This requires that: 

$ < ??[I - (1 + 4@)“2] 

which can be reformulated as: 

and 

I I 
$ > 2j[(l + 4 tan* @)’ - 11. 

(9) 

For a natural shear-strain rate of lo-l4 s-l, a 
reverse sense of non-coaxiality occurs for a variation of 
the boundary displacement vector at a rate of 
3.6 x lop5 degree y-i. Similarly, if the displacement 
vector is initially at 45” to the shear zone boundary, bulk- 
scale super-simple shear occurs if the orientation de- 
creases at a rate of 4.5 x lo-’ degree y-l. 

The size of the boundary of a deformation depends on 
the scale of interest. On the scale of plate boundaries, 
long-lived (1 Ma), monotonic variation of the displace- 
ment vector on the order of 10e5 degree y-l appears 
rare, although fluctuations about some mean vector are 
not precluded. Observations of natural deformation 
strongly suggest that the smaller the scale, the more 
inconstant the boundary. On the scale of a fold limb, 
during the time period of fold development, the bound- 
ary displacement vector imposed by the adjacent layers 
may vary as much as 90”, if the fold develops toward 
being isoclinal. Commonly observed successive refold- 
ing (e.g. Bell 1978, Cobbold & Quinquis 1980, Hudles- 
ton 1989) in ductile shear zones estimated to span a time 
period on the order of one million years (see Pfiffner & 
Ramsay 1982 and references therein) suggests that the 
variation of the boundary displacement vector on, or 
greater than, the order of 1O-5 degree y-l is easily 
achieved on the outcrop scale. It is at this scale where 
essentially all direct studies of structures, observation 
and data collecting are practised. Therefore, we con- 
clude that super-simple shear and reverse sense of non- 
coaxiality are to be expected at the map-scale. When 
considering the kinematic history of a deformation, it is 
necessary to anticipate non-steady flow histories with 
the possibility of reverse non-coaxiality and flow 
regimes ranging over pure shear, sub-simple shear, 
simple shear and super-simple shear. 

DEFORMATION PATH AND STRUCTURES 

Deformation paths: kinematics and mechanism 

Structures or fabrics generally can only record an 
incomplete history-something rather than everything 
-of the deformation. This is because: (1) the rock 
record is temporally discontinuous-structures, fabrics 
and kinematic indicators strictly speaking can record 
one or several, but rarely all deformation increments; 
and (2) rocks commonly exhibit fading memory-they 
tend to forget their remote past experience (Hobbs 
1972, Ferguson 1979, Means 1989, Passchier et al. 1990, 
White & Flagler 1992). Transposition and recrystalliza- 
tion are two ways amongst others by which rocks lose 
their record of the remote past. In the case of a steady- 
state fabric (Means 1981), the rocks only record their 
latest flow state. As a result of this incompleteness of 
structural records, correlation of different deformation 
domains must be done carefully (Williams 1985). 

Understanding a path requires knowledge of the evol- Also, most structures and fabrics need not show a 
ution with time of some state in the vicinity of a material unique correspondence to the deformation path. For 

point. For structural studies, such a vicinity can be 
viewed as a parametrically homogeneous domain whose 
size depends on the scale of interest and the complexity 
of structures. Metamorphic studies routinely consider 
such paths, where pressure and temperature define the 
state, and evolution with time gives a P-T-t path. 

Kinematically, the flow state at a point can be com- 
pletely characterized by three kinematic numbers: W,, 
Wk and Ak, the kinematic dilatancy number-a measure 
of volume change rate (Passchier 1991a, cf. Jiang 
1994b). Plotting these three parameters in Wk-Wk-Ak 
space and chaining the points by the time arrow will 
define the kinematic path (Wk-WL-A,-t path) for that 
vicinity. Mechanistically, deformation is achieved by 
certain mechanisms whose time history defines the 
mechanism-t path. Kinematic and mechanistic paths 
define the deformation path. There is both expectation 
and observational support for spatial variation of defor- 
mation paths, and it has been theoretically demon- 
strated that in rocks with layers of varied competence, 
each layer will follow a different kinematic path (Ishii 
1992, Jiang 1994b). The deformation paths of all the 
domains, i.e. the distribution of deformation paths, 
depict the whole movement picture. The relationship 
between W,, Wk and the competence factors of the 
layers, and their time behaviour, for isochoric flow, are 
shown in fig. 9 of Jiang (1994b), from which a 
Wk-Wk-Ak-t path can be constructed. However, the 
deformation paths of natural deformation remain diffi- 
cult to establish, although attempts have been made 
since at least the beginning of this century (Sander 1911, 
Flinn 1962, Elliott 1972, Ramsay & Wood 1973, Pass- 
chier & Urai 1988, Vissers 1989, Passchier 1990, and 
reviews by Wenk & Christie 1991, Means 1994). Some 
difficulties and associated problems that must be ac- 
knowledged during interpretations of field data are 
briefly discussed in the following. 

The nature of structural records 

“Something of the origin and evolution of any rock is recorded in its 
fabric” (Turner & Weiss 1963, p. 36). 
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example, shortened or folded boudins can be inter- 
preted as the result of at least four different types of 
deformation paths: (1) steady super-simple shear 
(Means et al. 1980, Hanmer & Passchier 1991); (2) 
overprinting of a later shortening on an earlier exten- 
sion; (3) volume change (von Brunn & Talbot 1986); and 
(4) non-steady flow (Jiang 1994a). Unless sufficient 
independent constraints are available, uniqueness is not 
achievable (Hudleston & Lan 1993). 

Distribution, partitioning and the dilemma with the 
estimate of spin 

Lister & Williams (1983) used the term partitioning to 
mean: (1) the kinematic decomposition of the velocity 
field and especially the decomposition of vorticity into 
internal or shear-induced vorticity and spin com- 
ponents; and (2) spatial variation of a quantity like 
strain, strain rate or vorticity. Ramsay & Huber (1983, 
p. 113) have used the term mechanistically to mean the 
separation of the total deformation into various con- 
tributing mechanisms such as pressure solution, grain 
boundary sliding and crystal plastic strain. Means (per- 
sonal communication) has pointed out that mechanistic 
partitioning is always a matter of spatial partitioning, 
e.g. crystal plastic strain within the grains and grain 
boundary sliding in the regions between grains. In a 
recent paper by Mohanty & Ramsay (1994)) partitioning 
has been used to mean the factorization (Ramsay & 
Huber 1987, p. 838, Means 1994) of the finite strain into 
volume change, heterogeneous simple shear etc. Lister 
& Williams’ dual meaning of the term is the most 
commonly used (e.g. Hanmer & Passchier 1991, Ishii 
1992, Simpson & De Paor 1993). For clarity, Jiang 
(1994a) has restricted the term partitioning to the kine- 
matic decomposition at a point of a quantity such as 
vorticity. Distribution has been formally introduced to 
mean the spatial variation of a quantity. Familiar 
examples of distribution include the gradient of a shear 
strain, which may also indicate a distribution of shear- 
strain rate, across a Ramsay and Graham shear zone and 
the variations in finite strain among different structural 
domains (e.g. Wood 1973, Ramsay 1982, Paterson et al. 
1989, Stauffer & Lewry 1993, Goodwin & Wenk in 
press). 

Once partitioning and distribution of flow are clearly 
differentiated, it can be recognized that spin is not 
simply the variation in orientation of a marker line such 
as bedding. In a simple natural fold, we may be able to 
estimate the rotation of the layer if we know its prefold- 
ing attitude, but this provides no information regarding 
the spin of the ISA in the layer unless the deformation 
path is assumed. What we can hope to derive from the 
symmetry of the structures or fabrics is non-coaxiality 
(Sander 1970, Means et al. 1980, Passchier 1990, Means 
1994). A train of asymmetric folds or a fabric with 
monoclinic symmetry is commonly attributed to non- 
coaxial flow. However, such attributes are internal 
(domainal) and say nothing about the spin of the ISA in 
that domain with respect to an external frame. Although 

there is no effective way to estimate the spin history, spin 
is kinematically important because (1) it will change the 
magnitude and/or even sense of Wi which is directly 
related to the symmetry of the structures and fabrics, 
and (2) spin will change the orientations of flow eigen- 
directions and, therefore, the geometric relationship 
between the structures and the host zone. In practice, 
spin is often implicitly set at zero. This has created an 
unnecessary dilemma for structural interpretations. 

Super-simple shear 

McKenzie (1979) considered super-simple shear 
(W; > 1, De Paor 1983) to be the most common flow 
type in mantle circulation rather than simple shear 
(W; = 1). Such flow has distinct implications for struc- 
ture and mixing in the mantle (Allegre & Turcotte 1986, 
Turcotte 1991). However, in crustal deformation, sim- 
ple shear and pure shear are routinely treated as the 
upper and lower limits of natural flow (Pfiffner & Ram- 
say 1982, Passchier 1990, Hanmer & Passchier 1991), 
whereas super-simple shear is considered to be possible 
only at the grain-scale (Means 1981, Talbot & Jackson 
1987) or in the,vicinity of deformable porphyroclasts 
(Simpson & De Paor 1993). Jiang (1994a,b) has theore- 
tically demonstrated that even in bulk sub-simple shear 
(0 < WL < 1) environments, super-simple shear flow 
can occur as a result of rheological contrasts. Addition- 
ally, we have demonstrated above that geologically 
realistic boundary inconstancy can induce super-simple 
shear. Therefore, the preclusion of super-simple shear 
has no theoretical foundation. The difficulty in identify- 
ing super-simple shear in rocks may be a reason for such 
a state. Current methods to estimate non-coaxiality will 
preclude super-simple shear because they require that 
the ISA be irrotational with respect to the shear zone 
boundary, ensuring that the shear zone boundary is 
always a flow eigenvector. In so doing, the flow can 
never have a kinematic vorticity number exceeding 1. 

The structure in Fig. 2 demonstrates a super-simple 
shear regime. Two sets of shear bands are developed in 
metasedimentary rocks. They cut each other, indicating 
concurrent development, and have the same sinistral 
sense of shear. No matter what the shear-strain rates 
accommodated by the two bands are and irrespective of 
whether they were time-dependent, as long as their ratio 
is nearly constant, the internal kinematic vorticity (non- 
coaxiality) for the simultaneous development of the two 
sets is always greater than unity (Fig. 2, see Appendix 
for the formulation of Wk). 

Since both stretching and vorticity contribute to finite 
deformation (Mitra 1976, McKenzie 1979), the degree 
of non-coaxiality is also a measure of the efficiency of 
finite strain accumulation (Pfiffner & Ramsay 1982) 
during flow. Pfiffner & Ramsay (1982) demonstrated 
that it is impossible to estimate the strain rate of natural 
deformation using finite strain markers without presum- 
ing the deformation path. As the existence of super- 
simple shear will put different constraints on the avail- 
able paths, its influence on such calculations requires 
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discussion. Pfiffner & Ramsay (1982) consider simple 
shear (Wk = 1) as the most inefficient flow and pure 
shear (Wk = 0) as the most efficient flow for the accumu- 
lation of uniform finite strain in nature and obtained 
natural strain rates in the range of lo-l2 to lo-l5 s-l. If 
super-simple shear is taken into consideration, the most 
inefficient flow should be pure rotation (Wk = ~0). In 
such a case, the actual natural strain rate can be much 
higher because the observed finite strain will require a 
higher strain rate to achieve within the estimated time 
period if a much less efficient path (WL > 1) was taken. 
Strain rate within a particular structural domain is itself 
not a prescribed parameter, but will depend on bound- 
ary movement rate and deformation distribution (White 
& Mawer 1992). 

DEVELOPMENT OF KINEMATIC INDICATORS- 
SHEAR-BAND CLEAVAGE AND TAILED 

PORPHYROCLASTS 

Kinematic and mechanical shear bands 

Foliations in ductile shear zones are ubiquitously 
sought out as kinematic indicators (e.g. Platt & Vissers 
1980, Simpson & Schmid 1983, Platt 1984, Weijermars 
& Rondeel 1984, Hanmer 1986, Passchier 1991b, 
Hanmer & Passchier 1991). We use them as examples to 
demonstrate the effect of spinning flow. The theoretical 
considerations can be similarly applied to other indi- 
cators such as rotated porphyroclasts (Passchier & Simp- 
son 1986). 

The two types of cleavage recognized are S cleavage 
(schistosity) and shear-band cleavage (Berthe et al. 
1979, Jegouzo 1980, Ponce de Leon & Choukroune 
1980, Platt & Vissers 1980, Lister & Snoke 1984, Harris 
& Cobbold 1984, Dennis & Secor 1987, 1990). In the 
literature, shear-band cleavages parallel or subparallel 
to the host shear zone boundary have been termed C- 
planes, whereas those oblique to the host shear zone 
boundary have been variously termed as shear band 
cleavage (White 1979, White et al. 1980), asymmetrical 
extensional crenulation cleavage (Platt & Vissers 1980), 
C’-bands (Ponce de Leon & Choukroune 1980) and 
normal slip crenulation (Dennis & Secor 1990). In 
contrast to this complex nomenclature, Lister & Snoke 
(1984) did not make any differentiation among shear 
band cleavages merely on their orientations, probably in 
recognition that they are often microstructurally indif- 
ferentiable. Lister & Snoke (1984, fig. 9) and especially 
Behrmann (1987) emphasized that shear band cleavage 
may have different geometric and kinematic relation- 
ships with respect to the shear zone boundary. We adopt 
this broad definition of the S-C fabric. 

Foliations ascribed to shear band cleavage can have 
both a kinematical and mechanical origin. The kinemati- 
cal origin is related to the alignment of material lines 
(e.g. mica traces) along, and the progressive rotation of 
shape fabrics such as the S-foliation toward the flow 
extensional eigenvector. This origin usually occurs in 

relatively pervasive plastic deformation and the shear 
bands often have diffuse boundaries. The orientation of 
such shear bands is solely controlled by flow kinematics. 
An excellent example is found in fig. 1 of Simpson & 
Schmid (1983), where C foliation is clearly a result of 
large finite strain. The mechanical origin is related to 
shear strain localization that forms yield surfaces, in 
which case, the developing shear band cleavages serve as 
new deformation mechanisms which often overprint 
earlier foliations (e.g. S foliation, earlier shear bands). 
The orientation of such shear bands is determined by the 
interaction between the orientations of the principal 
stresses and rock anisotropy. Figure 5 of Simpson & 
Schmid (1983) demonstrates this, where the shear-band 
cleavage is more localized, discrete and has relatively 
well defined boundaries, which overprints shape fabrics. 
We wish to emphasize that once a shear-band cleavage is 
initiated, irrespective of its origin, the subsequent devel- 
opment can be complex, particularly when the associ- 
ated deformation conditions (e.g. pressure, 
temperature, strain rate) change. For example, 
kinematically-initiated shear bands may subsequently 
serve as sites of strain localization and become geometri- 
cally analogous to Riedel shears (see Bartlett et al. 1981, 
Shimamoto 1989). Similarly, mechanically-initiated 
shear bands of various orientation may become parallel 
to the flow eigenvector as finite strain accumulates. The 
recognition of two types of shear-band cleavage empha- 
sizes the need to clearly distinguish between geometry 
and genetics. 

Mechanical initiation of shear bands has been studied 
experimentally by Shimamoto (1989) and Williams & 
Price (1990). Results have provided insights into mylo- 
nites and cataclasites in shear zones (Shimamoto 1989, 
Babaie et al. 1991). In the following, we investigate the 
kinematical initiation that typically occurs under more 
pervasive plastic deformation conditions. We demon- 
strate that shear-band cleavage developed in this way 
can have various geometric and kinematic relations with 
the host shear zone as a result of spinning flow histories. 

Orientations and sense of non-coaxiality of shear bands 

It is clear from the partitioning of flow that the 
description of a flow is different in different reference 
frames if these frames rotate, one with respect to 
another. For example, the flow description within a 
shear zone can be represented by different Eulerian 
velocity gradient tensors such as LsZB or LISA depending 
on whether the shear zone boundary (SZB) or the ISA 
are taken as the reference frame. The kinematic vorti- 
city number of LSZB, W,, is always ~1 and the SZB is 
always an eigenvector of L SZB (extensional or contrac- 
tional depending on whether the shear zone is a narrow- 
ing one or widening one, see Simpson & De Paor 1993). 
Whereas LISA is directly related to the fabric, LsZB is 
not. The kinematic vorticity number of LISA, wik,, is the 
non-coaxiality. Unlike W,, W; can be greater than one, 
in which case no eigenvectors exist in the plane perpen- 
dicular to the vorticity vector. If Wl < 1, the eigenvec- 
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QM = (4&*+ v’)‘” 

PM = QM sine 

p = 180 - (90-e) - tan-‘($X) 
= 90 + e - tan-‘(y/2&) 

o=PN=PMsinP 
= 1; sin% + tsinZt3 

Fig. 6. Mohr circle construction for determining the instantaneous 
angular velocity of material lines with respect to the reference frame 
fixed to the shear zone boundary (Fig. 5). M and Q are plots of the 
shear zone boundary and shear zone normal, respectively. An arbi- 
trary material line making an angle 0 with respect to the shear zone 
boundary is plotted at P. Its angular velocity o is the length of PN, 

which is perpendicular to the horizontal axis. 

tors of LIsA can be obtained by finding the orientation(s) 
of the material line(s) having the same angular velocities 
as the spin of the ISA, i.e.: 

2w = spin (10) 

where o is the angular velocity of material lines. 
In the bulk flow field described in equations (l)-(9), 

the angular velocity (w) of a material line making an 
angle 8 with respect to the shear zone boundary can be 
obtained from the Mohr circle construction (Fig. 6) 
where: 

w = 9 sin* 8 + i sin 28 (11) 

Incorporating (3)-(11) and after manipulation, the par- 
ticular angles (0,) for (10) to hold are: 

8, = +cos-’ WL2- cos-l w,* 
(12) 

Although in the chosen reference frame W, is always 
~1, WL can exceed 1, as has been demonstrated 
(equation 9). 

When Wk > 1, 8, does not exist because the flow is 
super-simple shear characterized by no material line 
being irrotational with respect to the ISA. 

When W; = 1, the flow is simple shear, and one 
eigenvector exists with 8, = - 1/2cos-‘W,. 

When 0 c 1 W;/ < 1, the flow is sub-simple shear, and 
two 8, exist. 

When W; = 0, the flow is pure shear, two 8, exist and 
coincide with the two principal strain-rate axes. 

It is now clear that time-dependent boundary dis- 
placement will result in spin, as will rheological contrasts 
(Jiang 1994b). Depending on the sense and rate of spin 
(W,), flow varies over the range of pure shear to super- 
simple shear. The rotation intensity and flow non- 
coaxiality can be represented by Mohr circles. Figure 7 
explicitly shows that fabrics are not only related to the 
sense and magnitude of non-coaxiality (Means et al. 
1980), but are also related to spin, in that spin changes 
both the non-coaxiality and the orientation of eigen- 
directions. It is this spin that can give rise to the various 
observed geometric and kinematic relationships of 
structures and fabrics to their host shear zone bound- 
aries. We demonstrate this using the development of S- 
C fabrics as an example (Fig. 8). The principles eluci- 
dated can be similarly applied to any other kinematic 
indicators such as rotated porphyroclasts. 

Case I: spin = 0 

This type of bulk flow occurs when either: (1) the 
boundary displacement rate is steady; or (2) the ratio of 
boundary-normal longitudinal strain rate to the 
boundary-parallel shear-strain rate is constant (i.e. 
B = E/j = constant). In both cases, W, = Wk and the 
angle between the extensional eigenvector of LISA and 
the shear zone boundary (0) is zero. This represents the 
implicitly assumed condition for all existing shear zone 
interpretations. The direction parallel to the shear zone 
boundary is a sink of all material lines and a shear-band 
cleavage will develop parallel to it. In this case, C-planes 
must be parallel to the shear zone boundary and the 
sense of non-coaxiality of the S-C fabric does indicate 
the sense of boundary displacement. 

Case ZZ: spin > 0 but 0 < W; < Wk 

The situation for spin > 0 occurs when either the 
convergent component of displacement grows or the 
divergent component decays at a rate faster than the 
transcurrent component. When the induced spin is not 
strong enough to result in reverse non-coaxiality, we 
have 8 < 6. In this case, the C fabric will make an angle 
to the shear zone boundary, but the sense of non- 
coaxiality is the same as the sense of boundary displace- 
ment. This is commonly observed in the field where 
C-planes are subparallel to or deviate a few tens of 
degrees from the host shear zone boundary (e.g. Good- 
win & Wenk in press). 

Case Ill: spin > 0 and WL < 0, reverse sense of non- 
coaxiality 

This situation occurs under the same boundary con- 
ditions as case II, but spin is strong enough to induce a 
reverse sense of non-coaxiality, i.e. Wk < 0. In this case 
8 > E, and not only is the C fabric not parallel to the 
shear zone boundary, but the sense of non-coaxiality is 
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Fig. 7. Mohr circles demonstrating the fundamental difference between the intensity of rotation (W,) and degree of 
non-coaxiality (WL). Since the external reference frame is selected to be pinned to the shear zone boundary (Fig. 5), the 
shear zone boundary (SZB) is always irrotational in such a frame. Non-coaxiality (WL) describes the rotation properties of 
material lines with respect to the ISA. In this internal reference frame, the SZB rotates except when spin = 0. Depending on 
the sense and rate of the spin, the two eigenvectors of the flow examined in the ISA frame (A,, extensional and A2 , 
contractional) make different angles (0) with the SZB, and the sense of non-coaxiality may vary. Material lines having 
forward (FWR) and backward (BWR) rotation relative to the bulk shear sense can be represented for different flow states. 

CASE I 

CASE II 

spin > 0 

CASE III 

CASE IV 
:~&5&.~o: 

Fig. 8. The kinematic and geometric relationships of S-C fabrics to 
the host shear zone can vary significantly as a result of the spin of the 
ISA. Since only the extensional eigenvector (dashed line) is the stable 
end orientation of material lines (cf. Ghosh & Ramberg 1976), the 
contractional eigenvector of the flow is not indicated. See text for 

detail. 

antithetic to the boundary displacement. For such fab- 
rics to develop, equation (8) has to be satisfied. As 
already discussed, this may not be feasible on a plate 
scale, but such variations are not precluded at the 
mapping scale. Figure 2 of Behrmann (1987) is an 
excellent example of this case. 

Case IV: spin < 0 

The boundary condition for this case is opposite to 
that of cases II and III in that Wk always exceeds W,. In 
this case, transcurrent velocity components grow faster 
than the convergent components, or vice versa, the 
transcurrent velocity decays more slowly than the con- 
vergent component. When spin is strong enough, bulk 
super-simple shear (Wk > 1) will occur, in which case 
only a S fabric is expected to develop, because there are 
no end orientations for material lines. When Wk s 1, 
13 < O”, what are denoted as S-C’ or C-C’ fabrics will 
develop. Figure 35(b) of Hanmer & Passchier (1991) is 
an example of this case. 

The above demonstration explicitly shows that 
kinematically-initiated shear-band cleavages can have 
any orientations relative to the host shear zone bound- 
ary. Therefore, the rigid classification of shear-band 
cleavages into C- and C’-planes solely on their orien- 
tation is inappropriate. This emphasizes the correctness 
of Lister & Snoke (1984) in not linking S-C fabrics with 
any orientation relative to the host shear zone. Non- 
steadiness of flow derived from either boundary incon- 
stancy or rheological contrasts removes any requirement 
that the local flow eigenvector and tectonic transport 
direction be equivalent. Thus, the S-C fabric can have 
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complex geometric and kinematic relations to the host 
shear zones. Clearly, any assumptions of correspon- 
dence between local shear-band cleavage (C-planes) 
and boundary displacements appropriate to tectonic 
transport require substantiation in the field. Addition- 
ally, the complex development of kinematically- or 
mechanically-initiated shear-band cleavages as bulk 
finite strain accumulates may make differences be- 
tween them indiscernible. The observation of shear- 
band cleavages forming by two mechanisms is simply a 
manifestation of distribution and partitioning of flow 
at the observed scale. 

Porphyroclasts and associated foliations (tails and 
wings) can have equally complex geometric relation- 
ships (Fig. 3); the latter is anticipated given that non- 
steady flow must occur in the presence of rheological 
heterogeneities. Stauffer & Lewry (1993) describe ex- 
cellent examples of variably oriented winged porphyro- 
clasts ascribed to ‘general non-coaxial flow’ (Hanmer & 
Passchier 1991, Simpson & De Paor 1993). Finite strain 
gradients (fig. 2 of Stauffer & Lewry 1993) result from 
strain distribution on a large scale, while a wide variety 
and orientation of rotated, tailed porphyroclasts de- 
velops in response to local variations in non-coaxiality 
and eigen-directions within specific structural domains 
(fig. 8 of Stauffer & Lewry 1993). 

It is important during interpretations of kinematic 
indicators to recognize that ‘natural variations’ do not 
reflect failure on the part of rock to attain some ideal 
state, but rather indicate the inherent complexity of the 
flow that enables structures to develop and from which 
can be extracted a host of information. It is also import- 
ant to emphasize that variations in eigen-directions do 
not develop in response to the relative amounts of 
transcurrent and convergent displacements, but rather 
are products of the relative rates of change in such 
displacements. 

DISCUSSION 

Natural deformation conditions and kinematic analysis 

Structures and fabrics have been related to flow and/ 
or deformation eigen-directions (Hoeppener et al. 1983, 
Bobyarchik 1986, Simpson & De Paor 1993 and this 
study). In the situation of homogeneous and steady 
flow, this is simple and straightforward, because these 
eigen-directions are constant in space and with time. For 
heterogeneous and non-steady flows, eigen-directions 
change in space and with time. Flow can be considered 
approximately homogeneous only within a homogene- 
ous domain. Structures and fabrics will only have a local 
significance. Hasty correlation of structures or fabrics to 
distant boundary displacement is not justified. 

Compared to the spatial variation (heterogeneity) of 
natural deformation, variation of natural flow with time 
(non-steadiness) is even more difficult to deal with. This 

is because: (1) very few geological criteria exist for 
linking structures and fabrics to absolute time and for 
establishing spatial correlation; and (2) with the excep- 
tion of perhaps steady-state fabrics, a fabric does not 
generally indicate whether or not, and to what extent, 
the flow was steady during its development. Means 
(1976, in press) highlights the problem of relating the 
spatial variation in strain to rock history of progressive 
deformation and raises the point that the lower strain 
portion of a rock volume or body need not represent the 
earlier stage in the history of the more strained portion. 
This is because they may have witnessed entirely differ- 
ent kinematical and mechanistic paths and/or metamor- 
phic conditions. As pointed out by Newman & Mitra 
(1994), the dangers involved can be lessened by using 
cross-cutting relationships in addition to spatial vari- 
ation. Geochronology can potentially constrain the time 
of the deformational fabrics and events (e.g. Gromet 
1991, Scott et al. 1993), and can sometimes allow evalu- 
ation and comparison of the ages of deformational 
events from different portions of an outcrop, from 
outcrop to outcrop, and from region to region (Getty & 
Gromet 1992). This ideally can provide some infor- 
mation regarding the variation of flow distribution with 
time. However, the resolution of such techniques is only 
fine enough to distinguish separate deformational 
events, whereas it is still unable to unravel the processes 
during a specific event within which a fabric develops. At 
this stage, there seems no reliable way to evaluate the 
steadiness of flow during the development of a fabric. 

Theoretically, a non-steady flow history may, within 
prescribed limits, be divisible into several relatively 
steady periods. Only within a steady period can flow 
eigen-directions be considered approximately constant 
in orientation. The estimates and ensuing interpre- 
tations of the degree of non-coaxiality and/or volume 
change rate from deformed rocks (Passchier & Urai 
1988, Vissers 1989, Passchier 1990, Wallis 1992, see 
review by Means 1994) are valid only for the homogene- 
ous domain and in the time period during which flow is 
assumed to be steady. 

The previous discussion leads to a conclusion that 
kinematic analysis is justified only within a homogeneous 
domain and a steady period. The points are summarized 
in Fig. 9. The bulk vorticity, wb for any prescribed 
volume of rock, such as a shear zone, can be heteroge- 
neously distributed throughout domains, with further 
partitioning of the distributed vorticity possible within 
each domain. Ramifications of such distribution and 
partitioning include the generation of heterogeneous 
finite strain and geometrically contrasting, mappable 
structural domains which cannot be attributed to ideal 
simple shear. Although it may be demonstrable through 
mapping that the bulk zone has a ‘simple’ movement 
picture (Lister & Williams 1979), the anticipation of 
complex flow within the zone allows for coherent in- 
terpretation of variable structures that are precluded or 
considered abnormal by the strict application of simple 
shear or steady sub-simple shear at all scales of obser- 
vation (see also Robin & Cruden 1994). 
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Fig. 9. Schematic illustration of the relationships between concepts of kinematic flow and mapping nomenclature and 
methodology. Boundary displacements, which are typically used to categorize the type of shear zone, only set up the bulk 
vorticity within the shear zone. Bulk vorticity can be both spatially distributed and kinematically partitioned throughout the 
shear zone in response to heterogeneous and non-steady flow. Both distribution and partitioning are interrelated with 
deformation mechanisms. The spatial variations of parameters resulting from distribution and partitioning form the basis 
for mappable structural domains. These domains interact with one another, which is why heterogeneous deformation is 
often non-steady, leading to temporal and spatial evolution of structures. A primary attribute of such interaction, when 
coupled with the interdependence of what are commonly considered independent parameters, is that metamorphic, 

kinematic and mechanistic paths cannot be a priori considered in isolation. 

What tells the rock which path to take? 

From the point of view of pure kinematics, there is an 
infinite variety of paths for a certain finite deformation. 
However, all such paths are not equivalent dynamically. 
Dynamic laws will require a volume of rock to follow 
certain paths. These include balance of mass, balance of 
linear and angular momentum, conservation of energy, 
non-negative entropy production and so on (Truesdell & 
Toupin 1960, Prigogine 1967, Glansdorff & Prigogine 
1971). In the simplest situation where mechanical and 
thermal processes are decoupled, the paths of defor- 
mation will be such that the rate of dissipation of energy 
is maximum or minimum depending on whether the 
boundary of the deformation is a constant force bound- 
ary or a constant velocity boundary (Ramberg 1981, p. 
211,1986). However, there is little to suggest the decou- 
pling of mechanical and thermal processes during natu- 
ral deformation. To the contrary, it has long been 
realized that rock deformation cannot be separated from 
other geological processes such as metamorphism 
(Zwart 1969, Spry 1969). 

At any instant of rock transformation, the kinematic 
state of the flowing rock, the active deformation mech- 
anisms, metamorphic reactions and dynamic recrystalli- 
zation etc. define the response of the rock system to the 
interaction between rock heterogeneity and the con- 
ditions imposed by the surrounding rocks (immediate 
boundary). This response is governed by both the 
thermodynamic and mechanical laws. 

Kinematics and mechanisms are interrelated. On the 
one hand, the operative mechanisms which determine 

the rheological response of the rock provide ‘internal 
constraints’ (cf. Truesdell 1977) on the kinematics, 
ensuring that only certain flows are possible. On the 
other hand, distributed flow in a domain will favour 
initiation of certain mechanisms. Figure 4 demonstrates 
the influence different mechanisms can have on the 
resultant kinematic path. 

CONCLUSIONS 

(1) Natural deformation is inherently heterogeneous 
and non-steady. The development of structures depends 
on the occurrence of such flow, and interpretation of 
their genesis and kinematic significance should be made 
with this in mind. 

(2) When zones of deformation are defined by map- 
ping, behaviour of the zone boundaries and intervening 
rock must be differentiated. The boundary conditions 
only set up the bulk vorticity but do not constrain the 
internal deformation. The latter is a function of the 
distribution of the bulk flow and partitioning of the 
distributed flow in each domain. The kinematic relation- 
ship between boundaries and the intervening rock must 
be demonstrated rather than assumed. 

(3) The classical field discrimination of structural 
domains using geometrical elements reflects the distri- 
bution and partitioning of bulk flow into parametrical 
domains. Kinematic analysis is justifiable only within a 
homogeneous domain and a steady period. Integration 
and comparison of the different domains and periods 
allow synthesis of larger scale movement pictures. 
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(4) Dynamic laws will require a volume of rock to Glansdorff, P. & Prigogine, I. 1971. Thermodynamic Theory of 

follow a certain metamorphism-kinematic-mechanism 
Structure, Stability and Fluctuations. Wiley Interscience, London. 
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from granodiorite: mechanisms of grain-size reduction in the Santa 

effect reduces the infinite number of paths based purely Rosa mylonite zone, California. /. Struct. Geol. 

on kinematics and may explain the commonly repro- 
Gromet, L. P. 1991. Direct dating of deformational fabrics. In: MAC 

duced patterns of deformation that enable successful 
Short Course on Radiogenic Isotope Systems. Vol. 19 (edited by 
Heaman, L. & Ludden, J. N.). Toronto, May, 1991,167-189. 

field mapping. Hanmer, S. 1986. Asymmetric pull-aparts and foliation fish as kinema- 
tic indicators. J. Struct. Geol. 8, 111-122. 
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We set a reference frame (xy) with one slip system (p, , Fig. Al) 
parallel to the x-axis. The other slip system makes an arbitrary angle 0 
with respect to x. The Eulerian velocity at an arbitrary point P is the 
sum of two components contributed by 1;i and f2, respectively. 

The velocity component as a result of r1 is: 

Spry, A. 1969. Metamorphic Textures. Pergamon Press, Oxford. 
Stauffer, M. R. & Lewry, J. F. 1993. Regional setting and kinematic 

features of the Needle Falls Shear Zone, Trans-Hudson Orogen. 
Can. J. Earth Sci. 30, 1338-1354. The velocity component as a result of j2 is, expressd in .rg,: 
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The velocity gradient tensor L is: 

Fig. Al. Reference frame for the derivation of the flow velocity field 
for two-slip-system-accommodated flow. x (pi) and xi (h) are orien- 
tations of the two slip systems and the accommodating shear strain 
rates. P is an arbitrary point. The maximum principal stretching axis 
make an angle @ with respect to the x-axis (one slip system). See text 

for details. 

[::I = [: tf:]. 
Since the transformation from xty, to xy is: 

A2 when transformed into the xy frame, becomes: 

642) 

(A3) 

(A4) 

Therefore, the Eulerian velocity field, being the sum of two com- 
ponents, is: 

--)$ sin 0 cos f3 +i +f2 ~0s’ e 

[Z];[:;1~~]=[ -&sin26 ,UnOcos,l (A5) 

L= 
-+rsin ecose j,+j2c0s2e -.j2 sin2 e I. 646) 

+* sin e cos 8 

From A6, the stretching tensor D and vorticity tensor W can be easily 
obtained (see Means et al. 1980): 

.- g2 sin 28 
yl+j2 cos 28 

2 
D= 

I;i+iz cos 28 -8 & sin 28 

(A7) 
j1+i2 

O2 
w= 1 I +1+il 0 -- 

2 

The principal stretching rates are the two eigenvalues of D and the 
eigenvectors of D are the orientations of the ISA. The maximum 
stretching axis makes an angle @ with respect to the x-axis: 

~ = tan_I sin 28 + (I + c2 + 2c cos 2e)ln 

c+ c0s2e 
(‘48) 

where C = jl/j2. 
The vorticity of the flow is fi + jr. The spin component of the 

vorticity is: 

spin = W, = -2 ‘$ = -2 $?$I, (A9) 

The negative sign represents that a decrease of # corresponds to the 
sympathetic senSe of spin. If during the development of the shear 
bands, the shear strain rate ratio C is taken to be nearly constant, the 
spin is then negligible. In such a case, the non-coaxiality of the flow is: 

wL = (I+ c2 i &",0s 28)“’ @W 

Since (1 + C2 + 2C cos 2e)ln G 1 + C, it is clear that Wi is always 
greater than unity, i.e. the flow is super-simple shear. From field 
observation, the two sets of shear bands are equally developed, 
suggesting C = 1, and the angle f3 = 55”. This gives an estimated non- 
coaxiality of 1.74. 


